Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
1.
Life (Basel) ; 13(4)2023 Apr 11.
Article in English | MEDLINE | ID: covidwho-2301666

ABSTRACT

DSPAα1 is a potent rude thrombolytic protein with high medicative value. DSPAα1 has two natural N-glycan sites (N153Q-S154-S155, N398Q-K399-T400) that may lead to immune responses when administered in vivo. We aimed to study the effect of its N-glycosylation sites on DSPAα1 in vitro and in vivo by mutating these N-glycosylation sites. In this experiment, four single mutants and one double mutant were predicted and expressed in Pichia pastoris. When the N398Q-K399-T400 site was mutated, the fibrinolytic activity of the mutant was reduced by 75%. When the N153Q-S154-S155 sites were inactivated as described above, the plasminogen activating activity of its mutant was reduced by 40%, and fibrin selectivity was significantly reduced by 21-fold. The introduction of N-glycosylation on N184-G185-A186T and K368N-S369-S370 also considerably reduced the activity and fibrin selectivity of DSPAα1. The pH tolerance and thermotolerance of all mutants did not change significantly. In vivo experiments also confirmed that N-glycosylation mutations can reduce the safety of DSPAα1, lead to prolonged bleeding time, non-physiological reduction of coagulation factor (α2-AP, PAI) concentration, and increase the risk of irregular bleeding. This study ultimately demonstrated the effect of N-glycosylation mutations on the activity and safety of DSPAα1.

2.
mBio ; : e0371821, 2022 Feb 15.
Article in English | MEDLINE | ID: covidwho-2253924

ABSTRACT

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) extensively N-glycosylates its spike proteins, which are necessary for host cell invasion and the target of both vaccines and immunotherapies. These N-glycans are predicted to modulate spike binding to the host receptor by stabilizing its open conformation and host immunity evasion. Here, we investigated the essentiality of both the host N-glycosylation pathway and SARS-CoV-2 N-glycans for infection. Ablation of host N-glycosylation using RNA interference or inhibitors, including FDA-approved drugs, reduced the spread of the infection, including that of variants B.1.1.7 (Alpha), B.1.351 (Beta), P.1 (Gamma) and B.1.617.2 (Delta). Under these conditions, cells produced fewer virions and some completely lost their infectivity. Furthermore, partial enzymatic deglycosylation of intact virions showed that surface-exposed N-glycans are critical for cell invasion. Altogether, we propose protein N-glycosylation as a targetable pathway with clinical potential for treatment of COVID-19. IMPORTANCE The coronavirus SARS-CoV-2 uses its spike surface proteins to infect human cells. Spike proteins are heavily modified with several N-glycans, which are predicted to modulate their function. In this work, we show that interfering with either the synthesis or attachment of spike N-glycans significantly reduces the spread of SARS-CoV-2 infection in vitro, including that of several variants. As new SARS-CoV-2 variants, with various degrees of resistance against current vaccines, are likely to continue appearing, halting virus glycosylation using repurposed human drugs could result in a complementary strategy to reducing the spread of COVID-19 worldwide.

3.
Plant Biotechnol J ; 21(6): 1176-1190, 2023 06.
Article in English | MEDLINE | ID: covidwho-2244047

ABSTRACT

The recent SARS-CoV-2 pandemic has taught the world a costly lesson about the devastating consequences of viral disease outbreaks but also, the remarkable impact of vaccination in limiting life and economic losses. Vaccination against human Hepatitis B Virus (HBV), a major human pathogen affecting 290 million people worldwide, remains a key action towards viral hepatitis elimination by 2030. To meet this goal, the development of improved HBV antigens is critical to overcome non-responsiveness to standard vaccines based on the yeast-produced, small (S) envelope protein. We have recently shown that combining relevant immunogenic determinants of S and large (L) HBV proteins in chimeric antigens markedly enhances the anti-HBV immune response. However, the demand for cost-efficient, high-quality antigens remains challenging. This issue could be addressed by using plants as versatile and rapidly scalable protein production platforms. Moreover, the recent generation of plants lacking ß-1,2-xylosyltransferase and α-1,3-fucosyltransferase activities (FX-KO), by CRISPR/Cas9 genome editing, enables production of proteins with "humanized" N-glycosylation. In this study, we investigated the impact of plant N-glycosylation on the immunogenic properties of a chimeric HBV S/L vaccine candidate produced in wild-type and FX-KO Nicotiana benthamiana. Prevention of ß-1,2-xylose and α-1,3-fucose attachment to the HBV antigen significantly increased the immune response in mice, as compared with the wild-type plant-produced counterpart. Notably, the antibodies triggered by the FX-KO-made antigen neutralized more efficiently both wild-type HBV and a clinically relevant vaccine escape mutant. Our study validates in premiere the glyco-engineered Nicotiana benthamiana as a substantially improved host for plant production of glycoprotein vaccines.


Subject(s)
COVID-19 , Hepatitis B virus , Humans , Animals , Mice , Hepatitis B virus/genetics , Glycosylation , Tobacco/genetics , CRISPR-Cas Systems/genetics , COVID-19/genetics , SARS-CoV-2 , Hepatitis B Vaccines/genetics , Antibodies, Neutralizing , Hepatitis B Surface Antigens/genetics
4.
Avian Pathol ; 52(3): 157-167, 2023 Jun.
Article in English | MEDLINE | ID: covidwho-2236637

ABSTRACT

Infectious bronchitis virus (IBV) is an avian pathogen from the Coronavirus family causing major health issues in poultry flocks worldwide. Because of its negative impact on health, performance, and bird welfare, commercial poultry are routinely vaccinated by administering live attenuated virus. However, field strains are capable of rapid adaptation and may evade vaccine-induced immunity. We set out to describe dynamics within and between lineages and assess potential escape from vaccine-induced immunity. We investigated a large nucleotide sequence database of over 1700 partial sequences of the S1 spike protein gene collected from clinical samples of Dutch chickens submitted to the laboratory of Royal GD between 2011 and 2020. Relative frequencies of the two major lineages GI-13 (793B) and GI-19 (QX) did not change in the investigated period, but we found a succession of distinct GI-19 sublineages. Analysis of dN/dS ratio over all sequences demonstrated episodic diversifying selection acting on multiple sites, some of which overlap predicted N-glycosylation motifs. We assessed several measures that would indicate divergence from vaccine strains, both in the overall database and in the two major lineages. However, the frequency of vaccine-homologous lineages did not decrease, no increase in genetic variation with time was detected, and the sequences did not grow more divergent from vaccine sequences in the examined time window. Concluding, our results show sublineage turnover within the GI-19 lineage and we demonstrate episodic diversifying selection acting on the partial sequence, but we cannot confirm nor rule out escape from vaccine-induced immunity.RESEARCH HIGHLIGHTSSuccession of GI-19 IBV variants in broiler populations.IBV lineages overrepresented in either broiler, or layer production chickens.Ongoing episodic selection at the IBV S1 spike protein gene sequence.Several positively selected codons coincident with N-glycosylation motifs.


Subject(s)
Coronavirus Infections , Infectious bronchitis virus , Poultry Diseases , Viral Vaccines , Animals , Poultry , Chickens , Infectious bronchitis virus/genetics , Spike Glycoprotein, Coronavirus/genetics , Coronavirus Infections/prevention & control , Coronavirus Infections/veterinary , Poultry Diseases/prevention & control
5.
Respir Res ; 23(1): 343, 2022 Dec 13.
Article in English | MEDLINE | ID: covidwho-2162368

ABSTRACT

BACKGROUND: SARS-CoV-2 infected patients show heterogeneous clinical presentations ranging from mild symptoms to severe respiratory failure and death. Consequently, various markers reflect this wide spectrum of disease presentations. METHODS: Our pilot cohort included moderate (n = 10) and severe (n = 10) COVID-19 patients, and 10 healthy controls. We determined plasma levels of nine acute phase proteins (APPs) by nephelometry, and full-length (M65), caspase-cleaved (M30) cytokeratin 18, and ADAMTS13 (a disintegrin-like and metalloprotease with thrombospondin type-1 motif 13) by ELISA. In addition, we examined whole plasma N-glycosylation by capillary gel electrophoresis coupled to laser-induced fluorescence detection (CGE-LIF). RESULTS: When compared to controls, COVID-19 patients had significantly lower concentrations of ADAMTS13 and albumin (ALB) but higher M30, M65, α1-acid glycoprotein (AGP), α1-antitrypsin (AAT), ceruloplasmin (CP), haptoglobin (HP), and high-sensitivity C-reactive protein (hs-CRP). The concentrations of α1-antichymotrypsin (ACT), α2-macroglobulin (A2MG) and serum amyloid A (SAA) proteins did not differ. We found significantly higher levels of AAT and M65 but lower ALB in severe compared to moderate COVID-19 patients. N-glycan analysis of the serum proteome revealed increased levels of oligomannose- and sialylated di-antennary glycans and decreased non-sialylated di-antennary glycan A2G2 in COVID-19 patients compared to controls. CONCLUSIONS: COVID-19-associated changes in levels and N-glycosylation of specific plasma proteins highlight complexity of inflammatory process and grant further investigations.


Subject(s)
COVID-19 , Humans , Acute-Phase Proteins/analysis , COVID-19/diagnosis , Pilot Projects , Polysaccharides , SARS-CoV-2
6.
Front Microbiol ; 13: 1023847, 2022.
Article in English | MEDLINE | ID: covidwho-2123429

ABSTRACT

Human coronaviruses (HCoVs) HCoV-NL63, HCoV-229E, HCoV-HKU1 and HCoV-OC43 have been circulated in the human population worldwide, and they are associated with a broad range of respiratory diseases with varying severity. However, there are neither effective therapeutic drugs nor licensed vaccines available for the treatment and prevention of infections by the four HCoVs. In this study, we collected nasopharyngeal aspirates of children hospitalized for respiratory tract infection in China during 2014-2018 and conducted next-generation sequencing. Sequences of four HCoVs were then selected for an in-depth analysis. Genome sequences of 2 HCoV-NL63, 8 HCoV-229E, 2 HCoV-HKU1, and 6 HCoV-OC43 were obtained. Based on the full-length S gene, a strong temporal signal was found in HCoV-229E and the molecular evolutionary rate was 6 × 10-4 substitutions/site/year. Based on the maximum-likelihood (ML) phylogenetic tree of complete S gene, we designated H78 as a new sub-genotype C2 of HCoV-HKU1, and the obtained P43 sequence was grouped into the reported novel genotype K of HCoV-OC43 circulating in Guangzhou, China. Based on the complete genome, potential recombination events were found to occur as two phenomena, namely intraspecies and interspecies. Moreover, we observed two amino acid substitutions in the S1 subunit of obtained HCoV-NL63 (G534V) and HCoV-HKU1 (H512R), while residues 534 and 512 are important for the binding of angiotensin-converting enzyme 2 and neutralizing antibodies, respectively. Our findings might provide a clue for the molecular evolution of the four HCoVs and help in the early diagnosis, treatment and prevention of broad-spectrum HCoV infection.

7.
J Biol Chem ; 298(12): 102643, 2022 Oct 26.
Article in English | MEDLINE | ID: covidwho-2086373

ABSTRACT

Transmembrane protease serine 2 (TMPRSS2) is a membrane-bound protease expressed in many human epithelial tissues, including the airway and lung. TMPRSS2-mediated cleavage of viral spike protein is a key mechanism in severe acute respiratory syndrome coronavirus 2 activation and host cell entry. To date, the cellular mechanisms that regulate TMPRSS2 activity and cell surface expression are not fully characterized. In this study, we examined two major post-translational events, zymogen activation and N-glycosylation, in human TMPRSS2. In experiments with human embryonic kidney 293, bronchial epithelial 16HBE, and lung alveolar epithelial A549 cells, we found that TMPRSS2 was activated via intracellular autocatalysis and that this process was blocked in the presence of hepatocyte growth factor activator inhibitors 1 and 2. By glycosidase digestion and site-directed mutagenesis, we showed that human TMPRSS2 was N-glycosylated. N-glycosylation at an evolutionarily conserved site in the scavenger receptor cysteine-rich domain was required for calnexin-assisted protein folding in the endoplasmic reticulum and subsequent intracellular trafficking, zymogen activation, and cell surface expression. Moreover, we showed that TMPRSS2 cleaved severe acute respiratory syndrome coronavirus 2 spike protein intracellularly in human embryonic kidney 293 cells. These results provide new insights into the cellular mechanism in regulating TMPRSS2 biosynthesis and function. Our findings should help to understand the role of TMPRSS2 in major respiratory viral diseases.

8.
Med Nov Technol Devices ; 16: 100156, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-1956266

ABSTRACT

The Coronavirus disease 2019 (COVID-19) has posed a serious threat to global health and the world economy. Antiviral therapies targeting coronavirus are urgently required. The Cepharanthine (CEP) is a traditional Chinese herbal extract. Our previous research revealed that CEP has a very potent anti-coronavirus effect, but its mechanism of action was not fully understood. To investigate the effect of novel coronavirus on protein glycosylation in infected cells and to further investigate the mechanism of action of CEP against coronavirus, a cellular model using coronavirus GX_P2V infection of Vero E6 cells was established. The effect of coronavirus GX_P2V on host cell protein glycosylation was investigated by N-glycoproteomic analysis, and the antagonistic effect of CEP on the abnormal protein glycosylation caused by coronavirus was analyzed. The results showed that GX_P2V could cause abnormal changes in protein glycosylation levels in host cells, while CEP could partially antagonize the abnormal protein glycosylation caused by GX_P2V. In addition, we also found that CEP could regulate the glycosylation level of coronavirus S protein. In conclusion, this article provides important ideas about the infection mechanism of novel coronaviruses, providing evidence for CEP as a promising therapeutic option for coronavirus infection.

9.
Proteomics ; 22(15-16): e2100322, 2022 08.
Article in English | MEDLINE | ID: covidwho-1885450

ABSTRACT

Glycosylation of viral proteins is required for the progeny formation and infectivity of virtually all viruses. It is increasingly clear that distinct glycans also play pivotal roles in the virus's ability to shield and evade the host's immune system. Recently, there has been a great advancement in structural identification and quantitation of viral glycosylation, especially spike proteins. Given the ongoing pandemic and the high demand for structure analysis of SARS-CoV-2 densely glycosylated spike protein, mass spectrometry methodologies have been employed to accurately determine glycosylation patterns. There are still many challenges in the determination of site-specific glycosylation of SARS-CoV-2 viral spike protein. This is compounded by some conflicting results regarding glycan site occupancy and glycan structural characterization. These are probably due to differences in the expression systems, form of expressed spike glycoprotein, MS methodologies, and analysis software. In this review, we recap the glycosylation of spike protein and compare among various studies. Also, we describe the most recent advancements in glycosylation analysis in greater detail and we explain some misinterpretation of previously observed data in recent publications. Our study provides a comprehensive view of the spike protein glycosylation and highlights the importance of consistent glycosylation determination.


Subject(s)
COVID-19 , SARS-CoV-2 , Glycosylation , Humans , Mass Spectrometry/methods , Polysaccharides/chemistry , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism
10.
Computation ; 10(4):25, 2022.
Article in English | Web of Science | ID: covidwho-1820189

ABSTRACT

Some clinical studies have indicated activity of ivermectin, a macrocyclic lactone, against COVID-19, but a biological mechanism initially proposed for this anti-viral effect is not applicable at physiological concentrations. This in silico investigation explores potential modes of action of ivermectin and 14 related compounds, by which the infectivity and morbidity of the SARS-CoV-2 virus may be limited. Binding affinity computations were performed for these agents on several docking sites each for models of (1) the spike glycoprotein of the virus, (2) the CD147 receptor, which has been identified as a secondary attachment point for the virus, and (3) the alpha-7 nicotinic acetylcholine receptor (alpha 7nAChr), an indicated point of viral penetration of neuronal tissue as well as an activation site for the cholinergic anti-inflammatory pathway controlled by the vagus nerve. Binding affinities were calculated for these multiple docking sites and binding modes of each compound. Our results indicate the high affinity of ivermectin, and even higher affinities for some of the other compounds evaluated, for all three of these molecular targets. These results suggest biological mechanisms by which ivermectin may limit the infectivity and morbidity of the SARS-CoV-2 virus and stimulate an alpha 7nAChr-mediated anti-inflammatory pathway that could limit cytokine production by immune cells.

11.
Organic Chemistry Frontiers ; : 23, 2022.
Article in English | Web of Science | ID: covidwho-1721607

ABSTRACT

beta-Nucleosides are fundamental building blocks of biological systems and are widely used as therapeutic agents for the treatment of cancer and viral infections, among others. In the last two years, nucleoside analogues have been investigated with renewed urgency in the search for agents that are effective against SARS-CoV-2, the cause of the ongoing global pandemic of COVID-19. This has resulted in an explosion of activities in the field of beta-nucleoside synthesis. This review summarizes the historical perspective and the recent advances in the stereoselective synthesis of beta-nucleosides and their analogues. The synthetic strategies to obtain beta-nucleosides can be divided into three categories: (1) N-glycosylation;(2) intramolecular sugar ring formation;and (3) enzymatic transglycosylation.

12.
Viral Immunol ; 34(3): 165-173, 2021 04.
Article in English | MEDLINE | ID: covidwho-1569564

ABSTRACT

The current pandemic is caused by the coronavirus disease 2019 (COVID-19), which is, in turn, induced by a novel coronavirus (SARS-CoV-2) that triggers an acute respiratory disease. In recent years, the emergence of SARS-CoV-2 is the third highly pathogenic event and large-scale epidemic affecting the human population. It follows the severe acute respiratory syndrome coronavirus (SARS-CoV) in 2003 and the Middle East respiratory syndrome coronavirus (MERS-CoV) in 2012. This novel SARS-CoV-2 employs the angiotensin-converting enzyme 2 (ACE2) receptor, like SARS-CoV, and spreads principally in the respiratory tract. The viral spike (S) protein of coronaviruses facilities the attachment to the cellular receptor, entrance, and membrane fusion. The S protein is a glycoprotein and is critical to elicit an immune response. Glycosylation is a biologically significant post-translational modification in virus surface proteins. These glycans play important roles in the viral life cycle, structure, immune evasion, and cell infection. However, it is necessary to search for new information about viral behavior and immunological host's response after SARS-CoV-2 infection. The present review discusses the implications of the CoV-2 S protein glycosylation in the SARS-CoV-2/ACE2 interaction and the immunological response. Elucidation of the glycan repertoire on the spike protein can propel research for the development of an appropriate vaccine.


Subject(s)
Angiotensin-Converting Enzyme 2/physiology , COVID-19/immunology , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/physiology , Glycosylation , Humans , SARS-CoV-2/chemistry , SARS-CoV-2/genetics
13.
Evol Bioinform Online ; 17: 11769343211064616, 2021.
Article in English | MEDLINE | ID: covidwho-1559915

ABSTRACT

SARS-CoV-2, responsible for the current COVID-19 pandemic that claimed over 5.0 million lives, belongs to a class of enveloped viruses that undergo quick evolutionary adjustments under selection pressure. Numerous variants have emerged in SARS-CoV-2, posing a serious challenge to the global vaccination effort and COVID-19 management. The evolutionary dynamics of this virus are only beginning to be explored. In this work, we have analysed 1.79 million spike glycoprotein sequences of SARS-CoV-2 and found that the virus is fine-tuning the spike with numerous amino acid insertions and deletions (indels). Indels seem to have a selective advantage as the proportions of sequences with indels steadily increased over time, currently at over 89%, with similar trends across countries/variants. There were as many as 420 unique indel positions and 447 unique combinations of indels. Despite their high frequency, indels resulted in only minimal alteration of N-glycosylation sites, including both gain and loss. As indels and point mutations are positively correlated and sequences with indels have significantly more point mutations, they have implications in the evolutionary dynamics of the SARS-CoV-2 spike glycoprotein.

14.
Front Chem ; 9: 767448, 2021.
Article in English | MEDLINE | ID: covidwho-1556194

ABSTRACT

The SARS-CoV-2 spike protein is heavily glycosylated, having 22 predicted N-glycosylation sites per monomer. It is also O-glycosylated, although the number of O-glycosites is less defined. Recent studies show that spike protein glycans play critical roles in viral entry and infection. The spike monomer has two subdomains, S1 and S2, and a receptor-binding domain (RBD) within the S1 domain. In this study, we have characterized the site-specific glycosylation patterns of the HEK293 recombinant spike RBD and S1 domains as well as the intact spike derived from the whole virus produced in Vero cells. The Vero cell-derived spike from the WA1 strain and a D614G variant was analyzed. All spike proteins, S1, and RBDs were analyzed using hydrophilic interaction chromatography (HILIC) and LC-MS/MS on an Orbitrap Eclipse Tribrid mass spectrometer. N-glycans identified in HEK293-derived S1 were structurally diverse. Those found in the HEK293-derived RBD were highly similar to those in HEK293 S1 where N-glycosites were shared. Comparison of the whole cell-derived WA1 and D614G spike proteins revealed that N-glycosites local to the mutation site appeared to be more readily detected, hinting that these sites are more exposed to glycosylation machinery. Moreover, recombinant HEK293-derived S1 was occupied almost completely with complex glycan, while both WA1 and D614G derived from the Vero E6 cell whole virus were predominantly high-mannose glycans. This stands in stark contrast to glycosylation patterns seen in both CHO- and HEK cell-derived recombinant S1, S2, and the whole spike previously reported. Concerning O-glycosylation, our analyses revealed that HEK293 recombinant proteins possessed a range of O-glycosites with compositions consistent with Core type 1 and 2 glycans. The O-glycosites shared between the S1 and RBD constructs, sites T323 and T523, were occupied by a similar range of Core 1 and 2 type O-glycans. Overall, this study reveals that the sample nature and cell substrate used for production of these proteins can have a dramatic impact on the glycosylation profile. SARS-CoV-2 spike glycans are associated with host ACE2 receptor interaction efficiency. Therefore, understanding such differences will serve to better understand these host-pathogen interactions and inform the choice of cell substrates to suite downstream investigations.

15.
Biomolecules ; 11(10)2021 10 10.
Article in English | MEDLINE | ID: covidwho-1463549

ABSTRACT

Among the more recently identified SARS-CoV-2 Variants of Interest (VOI) is the Lambda variant, which emerged in Peru and has rapidly spread to South American regions and the US. This variant remains poorly investigated, particularly regarding the effects of mutations on the thermodynamic parameters affecting the stability of the Spike protein and its Receptor Binding Domain. We report here an in silico study on the potential impact of the Spike protein mutations on the immuno-escape ability of the Lambda variant. Bioinformatics analysis suggests that a combination of shortening the immunogenic epitope loops and the generation of potential N-glycosylation sites may be a viable adaptation strategy, potentially allowing this emerging viral variant to escape from host immunity.


Subject(s)
Epitopes/genetics , SARS-CoV-2/genetics , Epitopes/immunology , Humans , SARS-CoV-2/immunology
16.
Front Chem ; 9: 735558, 2021.
Article in English | MEDLINE | ID: covidwho-1463462

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus utilizes the extensively glycosylated spike (S) protein protruding from the viral envelope to bind to angiotensin-converting enzyme-related carboxypeptidase (ACE2) as its primary receptor to mediate host-cell entry. Currently, the main recombinant S protein production hosts are Chinese hamster ovary (CHO) and human embryonic kidney (HEK) cells. In this study, a recombinant S protein truncated at the transmembrane domain and engineered to express a C-terminal trimerization motif was transiently produced in CHO and HEK cell suspensions. To further evaluate the sialic acid linkages presenting on S protein, a two-step amidation process, employing dimethylamine and ammonium hydroxide reactions in a solid support system, was developed to differentially modify the sialic acid linkages on the glycans and glycopeptides from the S protein. The process also adds a charge to Asp and Glu which aids in ionization. We used MALDI-TOF and LC-MS/MS with electron-transfer/higher-energy collision dissociation (EThcD) fragmentation to determine global and site-specific N-linked glycosylation patterns. We identified 21 and 19 out of the 22 predicted N-glycosites of the SARS-CoV-2 S proteins produced in CHO and HEK, respectively. It was found that the N-glycosite at 1,158 position (N1158) and at 122, 282 and 1,158 positions (N122, N282 and N1158) were absent on S from CHO and HEK cells, respectively. The structural mapping of glycans of recombinant human S proteins reveals that CHO-Spike exhibits more complex and higher sialylation (α2,3-linked) content while HEK-Spike exhibits more high-mannose and a small amount of α2,3- and α2,6-linked sialic acids. The N74 site represents the most abundant glycosite on both spike proteins. The relatively higher amount of high-mannose abundant sites (N17, N234, N343, N616, N709, N717, N801, and N1134) on HEK-Spike suggests that glycan-shielding may differ among the two constructs. HEK-Spike can also provide different host immune system interaction profiles based on known immune system active lectins. Collectively, these data underscore the importance of characterizing the site-specific glycosylation of recombinant human spike proteins from HEK and CHO cells in order to better understand the impact of the production host on this complex and important protein used in research, diagnostics and vaccines.

17.
Microbiol Spectr ; 9(2): e0119921, 2021 10 31.
Article in English | MEDLINE | ID: covidwho-1398600

ABSTRACT

Human angiotensin I-converting enzyme 2 (hACE2) is a type I transmembrane glycoprotein that serves as the major cell entry receptor for SARS-CoV and SARS-CoV-2. The viral spike (S) protein is required for the attachment to ACE2 and subsequent virus-host cell membrane fusion. Previous work has demonstrated the presence of N-linked glycans in ACE2. N-glycosylation is implicated in many biological activities, including protein folding, protein activity, and cell surface expression of biomolecules. However, the contribution of N-glycosylation to ACE2 function is poorly understood. Here, we examined the role of N-glycosylation in the activity and localization of two species with different susceptibility to SARS-CoV-2 infection, porcine ACE2 (pACE2) and hACE2. The elimination of N-glycosylation by tunicamycin (TM) treatment, or mutagenesis, showed that N-glycosylation is critical for the proper cell surface expression of ACE2 but not for its carboxiprotease activity. Furthermore, nonglycosylable ACE2 was localized predominantly in the endoplasmic reticulum (ER) and not at the cell surface. Our data also revealed that binding of SARS-CoV or SARS-CoV-2 S protein to porcine or human ACE2 was not affected by deglycosylation of ACE2 or S proteins, suggesting that N-glycosylation does not play a role in the interaction between SARS coronaviruses and the ACE2 receptor. Impairment of hACE2 N-glycosylation decreased cell-to-cell fusion mediated by SARS-CoV S protein but not that mediated by SARS-CoV-2 S protein. Finally, we found that hACE2 N-glycosylation is required for an efficient viral entry of SARS-CoV/SARS-CoV-2 S pseudotyped viruses, which may be the result of low cell surface expression of the deglycosylated ACE2 receptor. IMPORTANCE Understanding the role of glycosylation in the virus-receptor interaction is important for developing approaches that disrupt infection. In this study, we showed that deglycosylation of both ACE2 and S had a minimal effect on the spike-ACE2 interaction. In addition, we found that the removal of N-glycans of ACE2 impaired its ability to support an efficient transduction of SARS-CoV and SARS-CoV-2 S pseudotyped viruses. Our data suggest that the role of deglycosylation of ACE2 on reducing infection is likely due to a reduced expression of the viral receptor on the cell surface. These findings offer insight into the glycan structure and function of ACE2 and potentially suggest that future antiviral therapies against coronaviruses and other coronavirus-related illnesses involving inhibition of ACE2 recruitment to the cell membrane could be developed.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , SARS-CoV-2/growth & development , Tunicamycin/pharmacology , Virus Attachment/drug effects , Virus Internalization/drug effects , Animals , Antiviral Agents/pharmacology , COVID-19/pathology , Carboxypeptidases/drug effects , Cell Line , Endoplasmic Reticulum/metabolism , Glycosylation/drug effects , HEK293 Cells , Humans , Membrane Proteins/metabolism , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Swine
18.
Int J Mol Sci ; 22(15)2021 Jul 28.
Article in English | MEDLINE | ID: covidwho-1346499

ABSTRACT

Glycosylation is a complex post-translational modification that conveys functional diversity to glycoconjugates. Cell surface glycosylation mediates several biological activities such as induction of the intracellular signaling pathway and pathogen recognition. Red blood cell (RBC) membrane N-glycans determine blood type and influence cell lifespan. Although several proteomic studies have been carried out, the glycosylation of RBC membrane proteins has not been systematically investigated. This work aims at exploring the human RBC N-glycome by high-sensitivity MALDI-MS techniques to outline a fingerprint of RBC N-glycans. To this purpose, the MALDI-TOF spectra of healthy subjects harboring different blood groups were acquired. Results showed the predominant occurrence of neutral and sialylated complex N-glycans with bisected N-acetylglucosamine and core- and/or antennary fucosylation. In the higher mass region, these species presented with multiple N-acetyllactosamine repeating units. Amongst the detected glycoforms, the presence of glycans bearing ABO(H) antigens allowed us to define a distinctive spectrum for each blood group. For the first time, advanced glycomic techniques have been applied to a comprehensive exploration of human RBC N-glycosylation, providing a new tool for the early detection of distinct glycome changes associated with disease conditions as well as for understanding the molecular recognition of pathogens.


Subject(s)
Blood Group Antigens/metabolism , Erythrocytes/metabolism , Glycomics , Polysaccharides/analysis , Protein Processing, Post-Translational , Glycosylation , Humans , Proteomics , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
19.
Mol Cell Proteomics ; 20: 100058, 2021.
Article in English | MEDLINE | ID: covidwho-1199368

ABSTRACT

The glycoprotein spike (S) on the surface of severe acute respiratory syndrome coronavirus (SARS-CoV-2) is a determinant for viral invasion and host immune response. Herein, we characterized the site-specific N-glycosylation of S protein at the level of intact glycopeptides. All 22 potential N-glycosites were identified in the S-protein protomer and were found to be preserved among the 753 SARS-CoV-2 genome sequences. The glycosites exhibited glycoform heterogeneity as expected for a human cell-expressed protein subunit. We identified masses that correspond to 157 N-glycans, primarily of the complex type. In contrast, the insect cell-expressed S protein contained 38 N-glycans, completely of the high-mannose type. Our results revealed that the glycan types were highly determined by the differential processing of N-glycans among human and insect cells, regardless of the glycosites' location. Moreover, the N-glycan compositions were conserved among different sizes of subunits. Our study indicates that the S protein N-glycosylation occurs regularly at each site, albeit the occupied N-glycans were diverse and heterogenous. This N-glycosylation landscape and the differential N-glycan patterns among distinct host cells are expected to shed light on the infection mechanism and present a positive view for the development of vaccines and targeted drugs.


Subject(s)
Polysaccharides/metabolism , Recombinant Proteins/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Animals , Glycosylation , Humans , Insecta/cytology , Polysaccharides/chemistry , Recombinant Proteins/genetics , Spike Glycoprotein, Coronavirus/genetics , Tandem Mass Spectrometry
20.
Biochem Biophys Res Commun ; 538: 80-87, 2021 01 29.
Article in English | MEDLINE | ID: covidwho-1125492

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of COVID-19 (coronavirus disease-19), represents a far more serious threat to public health than SARS and MERS coronaviruses, due to its ability to spread more efficiently than its predecessors. Currently, there is no worldwide-approved effective treatment for COVID-19, urging the scientific community to intense efforts to accelerate the discovery and development of prophylactic and therapeutic solutions against SARS-CoV-2 infection. In particular, effective antiviral drugs are urgently needed. With few exceptions, therapeutic approaches to combat viral infections have traditionally focused on targeting unique viral components or enzymes; however, it has now become evident that this strategy often fails due to the rapid emergence of drug-resistant viruses. Targeting host factors that are essential for the virus life cycle, but are dispensable for the host, has recently received increasing attention. The spike glycoprotein, a component of the viral envelope that decorates the virion surface as a distinctive crown ("corona") and is essential for SARS-CoV-2 entry into host cells, represents a key target for developing therapeutics capable of blocking virus invasion. This review highlights aspects of the SARS-CoV-2 spike biogenesis that may be amenable to host-directed antiviral targeting.


Subject(s)
Antiviral Agents/pharmacology , COVID-19 Drug Treatment , SARS-CoV-2/drug effects , Spike Glycoprotein, Coronavirus/antagonists & inhibitors , Spike Glycoprotein, Coronavirus/biosynthesis , Virus Internalization/drug effects , Antiviral Agents/therapeutic use , COVID-19/virology , Glycosylation , Humans , Molecular Targeted Therapy , Protein Folding , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL